Logo
Unionpedia
Comunicación
Disponible en Google Play
¡Nuevo! ¡Descarga Unionpedia en tu dispositivo Android™!
Instalar
¡Más rápido que el navegador!
¡Y libre de anuncios!

P (clase de complejidad)

Los recursos comúnmente estudiados en complejidad computacional son: – El tiempo: mediante una aproximación al número de pasos de ejecución que un algoritmo emplea para resolver un problema.

15 relaciones: Algoritmo de Strassen, Ciclo euleriano, Clases de complejidad P y NP, Computación paralela, EXPTIME, Máquina de Turing, NP (clase de complejidad), NP-completo, NP-hard, Problema de decisión, PSPACE, Quicksort, Teoría de la computación, Tiempo polinómico, Toroide.

Algoritmo de Strassen

En la disciplina matemática del álgebra lineal, el algoritmo de Strassen, llamado así por Volker Strassen, es un algoritmo usado para la multiplicación de matrices.

¡Nuevo!!: P (clase de complejidad) y Algoritmo de Strassen · Ver más »

Ciclo euleriano

En la teoría de grafos, un camino euleriano es un camino que pasa por cada arista una y solo una vez.

¡Nuevo!!: P (clase de complejidad) y Ciclo euleriano · Ver más »

Clases de complejidad P y NP

La relación entre las clases de complejidad P y NP es una pregunta que aún no se ha podido responder por la teoría de la complejidad computacional.

¡Nuevo!!: P (clase de complejidad) y Clases de complejidad P y NP · Ver más »

Computación paralela

La computación paralela es una forma de cómputo en la que muchas instrucciones se ejecutan simultáneamente, operando sobre el principio de que problemas grandes, a menudo se pueden dividir en unos más pequeños, que luego son resueltos simultáneamente (en paralelo).

¡Nuevo!!: P (clase de complejidad) y Computación paralela · Ver más »

EXPTIME

En teoría de la complejidad computacional, la clase de complejidad EXPTIME (también llamada EXP) es el conjunto de los problemas de decisión que pueden ser resueltos en una máquina de Turing determinista en tiempo O(2p(n)), donde p(n) es una función polinomial sobre n. En términos de DTIME, Se sabe que y por el teorema de la jerarquía temporal: de manera que al menos una de las inclusiones de la primera línea debe ser estricta (se piensa que todas esas inclusiones son estrictas).

¡Nuevo!!: P (clase de complejidad) y EXPTIME · Ver más »

Máquina de Turing

Una máquina de Turing es un dispositivo que manipula símbolos sobre una tira de cinta de acuerdo a una tabla de reglas.

¡Nuevo!!: P (clase de complejidad) y Máquina de Turing · Ver más »

NP (clase de complejidad)

En teoría de la complejidad computacional, NP es el acrónimo en inglés de nondeterministic polynomial time ("tiempo polinomial no determinista").

¡Nuevo!!: P (clase de complejidad) y NP (clase de complejidad) · Ver más »

NP-completo

En teoría de la complejidad computacional, la clase de complejidad NP-completo es el subconjunto de los problemas de decisión en NP tal que todo problema en NP se puede reducir en cada uno de los problemas de NP-completo.

¡Nuevo!!: P (clase de complejidad) y NP-completo · Ver más »

NP-hard

En teoría de la complejidad computacional, la clase de complejidad NP-hard (o NP-complejo, o NP-difícil) es el conjunto de los problemas de decisión que contiene los problemas H tales que todo problema L en NP puede ser transformado polinomialmente en H. Esta clase puede ser descrita como aquella que contiene a los problemas de decisión que son como mínimo tan difíciles como un problema de NP.

¡Nuevo!!: P (clase de complejidad) y NP-hard · Ver más »

Problema de decisión

En teoría de la computación, un problema es un conjunto de frases de longitud finita que tienen asociadas frases resultantes también de longitud finita.

¡Nuevo!!: P (clase de complejidad) y Problema de decisión · Ver más »

PSPACE

En teoría de la complejidad computacional, la clase PSPACE es el conjunto de los problemas de decisión que pueden ser resueltos por una máquina de Turing determinista en espacio de polinomios (S(n).

¡Nuevo!!: P (clase de complejidad) y PSPACE · Ver más »

Quicksort

El ordenamiento rápido (quicksort en inglés) es un algoritmo creado por el científico británico en computación C. A. R. Hoare, basado en la técnica de divide y vencerás, que permite, en promedio, ordenar n elementos en un tiempo proporcional a n log n.

¡Nuevo!!: P (clase de complejidad) y Quicksort · Ver más »

Teoría de la computación

La teoría de la computación es un conjunto de conocimientos racionales, sistematizados y funcionales que se centran en el estudio de la abstracción de los procesos que ocurren en la realidad con el fin de reproducirlos con ayuda de sistemas formales, es decir, a través de códigos de caracteres e instrucciones lógicas, reconocibles por el ser humano, con capacidad de ser modeladas en las limitaciones de dispositivos que procesan información y que efectúan cálculos como, por ejemplo, el ordenador.

¡Nuevo!!: P (clase de complejidad) y Teoría de la computación · Ver más »

Tiempo polinómico

En computación, cuando el tiempo de ejecución de un algoritmo (mediante el cual se obtiene una solución al problema) es menor que un cierto valor calculado a partir del número de variables implicadas (generalmente variables de entrada) usando una fórmula polinómica, se dice que dicho problema se puede resolver en un tiempo polinómico.

¡Nuevo!!: P (clase de complejidad) y Tiempo polinómico · Ver más »

Toroide

En geometría el toroide es la superficie de revolución generada por una curva plana cerrada simple que gira alrededor de una recta exterior coplanar (el eje de rotación) con la que no se interseca.

¡Nuevo!!: P (clase de complejidad) y Toroide · Ver más »

SalienteEntrante
¡Hey! ¡Ahora tenemos Facebook! »